



# Advanced Communication Technologies (CCE534)

# Lecture 4

# **IoT Architecture and Core IoT Modules**

# (Part 3: IoT Networking and LoRaWAN)



Assoc. Prof. Basem M. ElHalawany Faculty of Engineering at Shoubra Benha university, Egypt

### **IoT Networking**





**Considerations of IoT Networking:** 

- Communication between the IoT devices and the outside world <u>dictates the network architecture</u>.
- Choice of communication technology dictates the IoT device <u>hardware requirements and costs</u>.
- Due to the presence of numerous applications of IoT enabled devices, a single networking paradigm not sufficient to address all the needs of the consumer or the IoT device



Wireless communication for IoT Networking:

- Wireless communication technologies are attractive for IoT ecosystem because of the significant reduction and simplification in wiring involved.
- Various wireless standards have been established, which generally can be grouped into two main categories, depending on the transmission range:
  - 1. Short-range communication
  - 2. Long-range communication



### Short-range communication:

- These types of communication bridge the sensors to a local network but not necessarily the internet.
- Several standards exists that use the instrumentation, scientific and medical (ISM) radio bands.
- Each standard has different data rate constraints
- This includes:
  - 1) Wireless LAN (Wi-Fi), namely IEEE 802.11
  - 2) Wireless PAN, such as:
    - a) Bluetooth, namely IEEE 802.15.1 and Bluetooth Low Energy
    - b) ZigBee, namely IEEE 802.15.4
    - c) 6LoWPAN (IPv6 over Low-power Wireless Personal Area Networks (LoWPAN).



- This category includes low-power technologies and standards that cover the various WAN connectivity (known as LPWAN):
  - 1) Long-Range (LoRa/LoRaWAN), proprietary of SemTech: subgigahertz IoT communication technologies
  - 2) Sigfox, , proprietary of Sigfox
  - 3) Narrow-Band IoT (NB-IoT): Standardized by 3GPP (Rel 13) to enable IoT communication over existing cellular infrastructure



**3GPP :** Third Generation Partnership Project is the group of seven telecom organizations that manage and govern cellular technology

# **IoT Networking**

# Bandwidth vs Range

Bandwidth





# 1. LoRa-Based Networks:

- LoRa is a physical layer for a long-range and low-power IoT protocol while LoRaWAN represents the MAC layer.
- The PHY layer is a proprietary of (SemTech)
- Operates in license-free ISM bands





8

# 1. LoRa-Based Networks:

LoRa ISM bands in different areas



BANDWIDTH 12 MHz RESTRICTIONS 400 ms limit narrowband

#### 433 MHz 868 MHz

BANDWIDTH 0.571 MHz RESTRICTIONS 1% duty cycle (both bands)

433 MHz

RESTRICTIONS 1% duty cycle

BANDWIDTH 0.5 MHz

780 MHz BANDWIDTH 1MHr RESTRICTIONS TO GRAY

#### 433 MHz BANDWIDTH 0.5 MHz

RESTRICTIONS 1% duty cycle

#### 433 MHz 915 MHz

BANDWIDTH 0.5/12 MHz RESTRICTIONS To desproyee / 400.m2 land nameband

#### 900 Band HIGHLY FRACTURED

BANDWIDTH New To 2 MHs New 12 MHs RESTRICTIONS Not Unable to D 5 W to 4W

All the Bar

# 1. LoRa-Based Networks:

- LoRaWAN is One of the main contenders for LPWAN domain
- LoRaWAN has gained traction in Europe (network deployments by KPN, Proximus, Orange, Bouygues, Senet, Tata, and Swisscom).
- Since LoRa is the bottom of the stack, it has been adopted in competing architectures to LoRaWAN such as:
  - ✓ Symphony Link: for example, is LPWAN solution based on the LoRa PHY, using an eight-channel, sub-GHz base station for industrial and municipal IoT deployments.
  - ✓ DASH7: is a full network stack on the LoRa PHY (not just the MAC layer).

[1] Perry lea, "Internet of Things for Architects", Chapter 7, Packt Publishing Ltd, 2018

# 1. LoRa-Based Networks:

- The reasons for the wide-spread of LoRaWAN are:
  - ✓ Use unlicensed spectrum
  - ✓ A single LoRaWAN gateway has the potential to cover a significant amount of area. Belgium, with a land area of 30,500 km<sup>2</sup>, is completely covered by seven LoRaWAN gateways.
  - Typical range is 2 to 5 km in urban areas and 15 km in suburban areas.
  - ✓ This reduction in infrastructure cost is very different than 4G-LTE with much smaller cells.



12

### **LoRaWAN Network Architecture**



# **LoRaWAN Network Terminologies**

# NODES

# Small devices

- Sensors
- Peripherals

# Slave devices

# GATEWAYS

Powerful devices

# Router

- LoRa
- IP Network (Ethernet/WiFi etc)



14

# LoRaWAN Nodes on the Market (Sample)





LoPy 868/915 MHz ESP32 WiFi/BLE 4 MB Flash Python LORA GPS Hat 868/433/915 MHz LoRa GPS SPI Raspberry Pi 2/3





RN2483 868/433 MHz Microchip Waspmote Libelium 868/915 MHz C/C++



- ESP32, Microchip: are microcontroller chips
- LORA GPS Hat: can be connected to the Raspberry Pi to work either a node or a gateway. It is only a transponder without processing power

# LoRaWAN Gateways on the Market (Sample)

#### IMST IC880A-SPI (Lora Lite)

LoRa -> IP

Packet forwarder

8 channels at a time

Decodes multiple SF

IMST can be connected to Raspberry Pi

#### Kerlink IoT

LoRa -> IP

Packet forwarder

8 channels at a time

Decodes multiple SF





## LoRa and LoRaWAN protocol Stack

- ✓ LoRa represents the physical layer of a LoRaWAN network.
- ✓ LoRaWAN is another layer (MAC/ Data link layer) on top of LoRa which added by the LoRa Alliance.
- ✓ This means a set of rules and software that specifies how the payload looks, energy efficiency, and latency
- ✓ There are three MAC protocols that are part of the data link layer, which balance latency with energy usage

| LoRa / LoRaWAN Protocol Stack |                             |                             | Simplified OSI Model |
|-------------------------------|-----------------------------|-----------------------------|----------------------|
| Application Layer             |                             |                             | 7. Application Layer |
| LoRaWAN Layer                 |                             |                             |                      |
| Class-A<br>(Baseline)         | Class-B<br>(Baseline)       | Class-C<br>(Continuous)     | 2. Data Link Layer   |
| Lora PHY Modulation           |                             |                             |                      |
| Lora PHY Regional ISM Band    |                             |                             | 1 Physical Laver     |
| Lora PHY<br>EU Band 868 MHz   | Lora PHY<br>EU Band 433 MHz | Lora PHY<br>US Band 915 MHz | T. Physical Layer    |

# **LoRaWAN Devices' Classes**



**Downlink Network Communication Latency** 

- ✓ Class A sleeps most of the time, Class C is always on, while Class B is a mix (where Gateway can tell the device not to sleep)
- ✓ The Gateway must know when the Class A device is on for downlink transmission

# **Receive (Downlink) Window of Class A Device:**



- ✓ Class A transmits, then go to sleep and wait a time "Receive Delay 1" and try to receive data, otherwise go to sleep again
- $\checkmark$  Then wait for a second sleep period and try to receive, otherwise go to sleep.
- ✓ The gateway can send data to the node only at those times after it receives transmission from the node
- ✓ This is a problem because the class A may go to sleep for hours and the Gateway must wait even if it has messages, so it is not suitable for actuator nodes

19

### **LoRaWAN Devices' Classes**

- ✓ Class-A is the best for energy consumption but have the highest latency.
- ✓ Class-B is between Class-A and Class-C.
- ✓ Class-C has minimum latency but the highest energy usage.
- ✓ All endpoints that join a LoRaWAN network are first associated as Class-A with the option of changing class during operation.
- ✓ Class-A optimizes power by setting various Receive Delays during transmission.
- ✓ Class-B devices balance power and latency.
- ✓ It relies on a synchronization beacon being broadcasted by the gateway at regular intervals to the network.
- ✓ When a device receives a beacon, it creates a short ping slot (reception window), while it sleeps on other times.
- Essentially this is a gateway-initiated session and based on a slotted communication method

# **LoRaWAN Network Security**



# 21

# **LoRaWAN Network Security**

- ✓ LoRaWAN security encrypts data using the AES128 model.
- ✓ One difference in its security from other networks is LoRaWAN separates authentication and encryption.
- ✓ Authentication uses one key (NwkSKey), and user data uses a separate key (AppSKey).
- Network Security Key (NwkSkey) : authenticates nodes in the network
   Application Security Key (AppSkey) : ensures network operator cannot
- inspect the data, but only service provider can



 Notice that the gateways can not decrypt the payloads of different nodes but only the specific application server can do

# **LoRaWAN Network Security**

✓ Two types of activations are available:

| Over-the-Air-Activation (OTAA)                                                                                                                                                         | Activation by Personalization (ABP)                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>✓ To join any LoRaWAN network,<br/>devices will send a JOIN request.</li> <li>✓ Security keys can be updated on a<br/>per session basis, which enables<br/>roaming</li> </ul> | <ul> <li>✓ A LoRaWAN operator pre-<br/>allocates 32-bit network and<br/>session keys and a client will<br/>purchase a connectivity plan<br/>and appropriate set of keys</li> </ul> |
| <ul> <li>✓ App server has to answer to join<br/>requests each time a device<br/>(re)starts, generating more<br/>downlink traffic</li> <li>✓ The application and network</li> </ul>     | <ul> <li>The end-device pre-registered<br/>on the network, where keys are<br/>stored in end-device and NS.</li> <li>Simpler from application server<br/>point of view</li> </ul>   |
| session keys will be derived during the JOIN procedure.                                                                                                                                | <ul> <li>✓ Node tied to a particular<br/>network;</li> </ul>                                                                                                                       |

23

LoRa physical layer:

- $\checkmark$  It manages the modulation, power, receiving range
- ✓ LoRa modulation is based on Chirp spread- spectrum (CSS) technology, which makes it work well with channel noise, multipath fading and the Doppler effect, even at low power.
- ✓ The data rate depends on the used bandwidth and spreading factor (SF).
- ✓ LoRaWAN can use channels with a bandwidth of either 125 kHz, 250 kHz or 500 kHz, depending on the region.
- ✓ The spreading factor is chosen by the end-device and influences the time it takes to transmit a frame.



### LoRa Parameters:

| Parameter        | Value Range                   | Explenation                                                |
|------------------|-------------------------------|------------------------------------------------------------|
| frequency        | 863 - 870 Mhz / 902 – 928 MHz | The frequency used to transmit data                        |
| tx power         | 2 - 14 dBm / 5 – 20 dBm       | Power used to transmit                                     |
| bandwidth        | 125 / 250 / 500 KHz           | Data bandwidth                                             |
| spreading factor | 7 - 12                        | Frequency spreading factor                                 |
| coding rate      | 4/5, 4/6, 4/7, 4/8            | Error correction data are (how many error correction bits) |

- Notice that both transmission frequency and power are country specific and are subject to laws
- The higher the tx power, the longer the range but the shorter the battery life (tradeoff)
- The bandwidth that are used around the used frequency to transmit your data
- The higher the BW, the more possible interference, the shorter the range, the lower the battery life
- In Europe, they can use only 125 and 20 KHz bandwidth

## Assignment

- Prepare a report on Chirp spread Spectrum (CSS) Modulation containing at least answers to the following questions, but not limited to:
  - 1. Explain How CSS works?
  - 2. How CSS Modulation and Demodulation is done?
  - 3. What is the difference between chirps and chips?
  - 4. How symbols are encoded in CSS?
  - 5. Why CSS is resilient to interference?
  - 6. What is the spreading factor (SF) and how it affects on the LoRaWAN network scalability and range?
  - 7. What is the relation between SF, data rate, and range



### Watching Assignment

https://www.youtube.com/watch?v=T3dGLqZrjIQ https://www.youtube.com/watch?v=dxYY097QNs0 https://www.youtube.com/watch?v=80xcp9wQQnk



Basem M. ElHalawany

# References

- Simone Cirani, etal , "Internet of Things: Architectures, Protocols and Standards", Wiley, 2019
- Perry lea, "Internet of Things for Architects", Packt Publishing Ltd, 2018
- https://www.thethingsnetwork.org/getting-started#

# **Thank You**



**Basem M. ElHalawany**